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ABSTRACT
Background: Deep-learning algorithms to annotate electrocardio-
grams (ECGs) and classify different types of cardiac arrhythmias with
the use of a single-lead ECG input data set have been developed. It
remains to be determined whether these algorithms can be general-
ized to 12-lead ECG-based rhythm classification.
Methods: We used a long short-term memory (LSTM) model to detect
12 heart rhythm classes with the use of 65,932 digital 12-lead ECG
signals from 38,899 patients, using annotations obtained by
consensus of 3 board-certified electrophysiologists as the criterion
standard.

Machine-learning technology has been widely used to assist
Received for publication November 6, 2019. Accepted February 26, 2020.

Corresponding author: Dr Kuan-Cheng Chang, Division of Cardiovascular
Medicine, China Medical University Hospital, 2, Yude Road, Taichung
40447, Taiwan. Tel.:þ886-04-22052121, ext. 4665; fax:þ886-4-22065593.

E-mail: kuancheng.chang@gmail.com
See page 10 for disclosure information.

https://doi.org/10.1016/j.cjca.2020.02.096
0828-282X/� 2020 Canadian Cardiovascular Society. Published by Elsevier Inc. A
R�ESUM�E
Contexte : Des algorithmes d’apprentissage profond conçus pour
annoter les �electrocardiogrammes (ECG) et classifier diff�erents types
d’arythmie cardiaque à partir des donn�ees d’un ECG à une seule
d�erivation ont �et�e mis au point. Nous avons tent�e de d�eterminer si ces
algorithmes peuvent être g�en�eralis�es pour obtenir une classification à
partir des donn�ees d’un ECG à 12 d�erivations.
M�ethodologie : Nous avons utilis�e un modèle LSTM (Long Short-Term
Memory) pour reconnaître 12 cat�egories de rythmes cardiaques à
partir de 65 932 signaux num�eriques d’ECG à 12 d�erivations obtenus
auprès de 38 899 patients; nous avons utilis�e les annotations con-
image interpretation, speech recognition, item matching, and
1

evaluation of myocardial perfusion.8
the presentation of relevant results in searching. Deep
learning, which is one type of machine learning, involves an
artificial neural network of representation-learning methods
with multilayer representation. Deep learning is superior to
other machine-learning techniques in image recognition and
speech recognition.2 It has been used to develop automatic
interpretation for different types of medical images, eg, from
mammography,3 chest X-ray,4,5 ultrasound,6 and magnetic
resonance imaging.7 For cardiovascular images, deep learning
has been developed to interpret the results of electrocardiog-
raphy, echocardiography, coronary computed tomography,
and single-photon emission computed tomography for the

Electrocardiography is an important noninvasive exami-
nation that is widely used to detect various heart diseases,
including rhythm disorders, conduction abnormalities, and
myocardial ischemia or infarction, by physicians across
different specialties.9 A computer-based automatic interpre-
tation system incorporated in the electrocardiography ma-
chine has been developed to assist diagnosis; however, the
accuracy rate of diagnosis remains limited and requires
improvement.10 Recently, deep-learning algorithms have been
created to read electrocardiograms (ECGs) and detect
different types of arrhythmias,11,12 with variable sensitivity
and specificity.13 Hannun et al. used a deep neural network
(DNN) to develop a cardiologist-level arrhythmia detection
system for diagnosing 12 types of cardiac rhythms.14 The
sensitivity of arrhythmia detection was improved. However,
the study was based on single-lead ECG records, which pro-
vide limited signals compared with 12-lead ECG records.

Recurrent neural network (RNN) models, which are often
used to process data related to sequence changes, have proved
ll rights reserved.
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Results: The accuracy of the LSTM model for the classification of each
of the 12 heart rhythms was � 0.982 (range 0.982-1.0), with an area
under the receiver operating characteristic curve of � 0.987 (range
0.987-1.0). The precision and recall ranged from 0.692 to 1 and from
0.625 to 1, respectively, with an F1 score of � 0.777 (range 0.777-
1.0). The accuracy of the model (0.90) was superior to the mean ac-
curacies of internists (0.55), emergency physicians (0.73), and cardi-
ologists (0.83).
Conclusions:We demonstrated the feasibility and effectiveness of the
deep-learning LSTM model for interpreting 12 common heart rhythms
according to 12-lead ECG signals. The findings may have clinical
relevance for the early diagnosis of cardiac rhythm disorders.

sensuelles �etablies par trois �electrophysiologistes sp�ecialis�es comme
critères de r�ef�erence.
R�esultats : L’exactitude du modèle LSTM utilis�e pour classifier les
rythmes cardiaques de chacune des 12 cat�egories s’�etablissait à �
0,982 (plage : de 0,982 à 1,0), l’aire sous la courbe caract�eristique de
la performance du test �etant de � 0,987 (plage : de 0,987 à 1,0). La
pr�ecision et le rappel allaient de 0,692 à 1 et de 0,625 à 1, respec-
tivement, le score F1 s’�etablissant à � 0,777 (plage : de 0,777 à 1,0).
L’exactitude du modèle (0,90) �etait sup�erieure à l’exactitude moyenne
des internistes (0,55), des urgentologues (0,73) et des cardiologues
(0,83).
Conclusions : Nous avons d�emontr�e la faisabilit�e et l’efficacit�e de
l’emploi du modèle d’apprentissage profond LSTM pour l’interpr�etation
de 12 rythmes cardiaques courants à partir des signaux d’un ECG à 12
d�erivations. Ces r�esultats pourraient être utiles sur le plan clinique aux
fins du diagnostic pr�ecoce des arythmies.
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to be effective for difficult machine-learning tasks.15 The
limitation of the RNN model is that it struggles to capture the
long-term time correlation, because the simple RNN cannot
handle the problem of regression or weighting exponential
gradient explosion (vanishing-gradient problem). Long short-
term memory (LSTM) is a type of RNN. By combining
different LSTM models, the problem of the vanishing
gradient can be solved.16 In the present study, we used LSTM
to detect 12 types of cardiac arrhythmias recorded in a digital
12-lead ECG. The diagnostic accuracy of the LSTM-derived
algorithm was compared with the ECG classification perfor-
mance of board-certified doctors from different dis-
ciplinesdcardiologists, emergency physicians, and
internistsdto evaluate the feasibility of the machine
learningebased model for clinical applications.
Methods

Data description

We collected 65,932 12-lead ECG waveform data signals
from 38,899 patients, which were annotated by cardiologists
and stored in the digital core ECG laboratory of China
Medical University Hospital (CMUH) from 2009 to 2018.
All of the 12-lead ECGs were recorded by a GE Marquette
MAC 5500 or MAC 3500 ECG recorder (GE Medical Sys-
tems, Milwaukee, WI, USA). Using a standardized protocol, a
10-second resting 12-lead ECG was recorded at a sampling
frequency of 500 Hz and was digitally transmitted and stored
in the MUSE system (GE Marquette) at the core ECG lab-
oratory of CMUH for subsequent analyses. To avoid elec-
tromagnetic interferences and other potential noises during
ECG recording, we followed the manufacturer’s recommen-
dations of filtering. In brief, the low-frequency digital filter
cutoff was 0.67 Hz or below and the high-frequency digital
filter cutoff was no lower than 150 Hz to reduce artifactual
distortion or error measurements in adults.17 The GE ECG
machine recorded the 10-second resting 12-lead ECG signals,
which can be read in Extensible Markup Language (XML)
format and converted into arrays of numeric values (Fig. 1),
which were then fed into the LSTM neural network for
learning. The raw data in the XML format comprises 12 types
of heart rhythms: atrial fibrillation (AFIB), atrial flutter (AFL),
atrial premature beat (APB), ventricular bigeminy
(BIGEMINY), complete heart block (CHB), ectopic atrial
rhythm (EAR), first-degree atrioventricular (AV) block
(FRAV), normal sinus rhythm (NSR), paroxysmal supraven-
tricular tachycardia (PSVT), second-degree AV block (SAV),
sinus tachycardia (ST), and ventricular premature beat (VPB).
Such end-to-end learning was enabled by deep learning
methodologies, and there was no need to extract features from
the ECG signals to represent each type of heart rhythms.

The study protocol was reviewed and approved by the
Research Ethics Committee of China Medical University
Hospital (CMUH107-REC2-134 [AR-1]). All research was
performed in accordance with relevant guidelines and regu-
lations. The Research Ethics Committee waived the require-
ment for the investigator to obtain signed consent forms from
the subjects owing to the retrospective database research
design of the study.

Algorithm development

Because ECGs represent sequence data, we used a bidi-
rectional LSTM model for sequence-sequence learning
tasks.16 Between the input layer and the output layer, our
model had 4 layers of bidirectional LSTM, each with 128
neurons (Fig. 2), and after these 4 layers of bidirectional
LSTM we appended a pooling layer and a dense layer (Fig. 1).
Conceptually, the input layer took in the 12-lead ECG signals
in the form of a stream of numeric values stored in an array;
the information was then processed in and propagated
through the LSTM neurons and all the hidden layers, and
finally the output layer took the output from the last hidden
layer (the dense layer) and used a softmax activation function
to assign a decimal probability to each of the 12 cardiac
rhythm classes. The class with the largest probability value was
the class predicted by the model for a given 12-lead ECG
input. At each LSTM neuron, an input gate, a forget gate, and
an output gate determined whether and how much the inputs
from the previous neuron and layer should be used to create
and update a memory, and whether and how much the
memory should be propagated to the next neuron. The



Figure 1. Illustration of max pooling process for the 12-lead electrocardiography (ECG) signals. At the output layer, a softmax activation function
was used to generate 12 different outputs, corresponding to the ECG waveform items. AFIB, atrial fibrillation; AFL, atrial flutter; APB, atrial pre-
mature beat; BIGEMINY, ventricular bigeminy; CHB, complete heart block; EAR, ectopic atrial rhythm; FRAV, first-degree AV block; LSTM, long short-
term memory; NSR, normal sinus rhythm; PSVT, paroxysmal supraventricular tachycardia; SAV, second-degree AV block, type I; ST, sinus tachy-
cardia; VPB, ventricular premature beat.

Figure 2. Architecture of the long short-term memory (LSTM) model. A
bidirectional 4-layer LSTM model was used. Each layer contained 128
neurons. A single LSTM unit contains input gate, output gate, and
forget gate to determine whether the memory is updated, using the
equations shown for calculation. It, input gate; Ot, output gate; Ft,
forget gate; s, logistic sigmoid function; Xt, input sequence; Ht�1, Wxi,
Wxo, Wxf, Wxc, Whi, the previous block output; Who, Whf, Whc, weight
parameters; bi, bo, bf, bc, bias parameters; Ct, candidate memory cell
similar to the 3 gates but using a tanh activation function; Ct�1, the
previous LSTM block memory; Ht, the final block output.
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pooling layer filtered out less-significant information from the
output of the last LSTM layer and reduced the number of
parameters; the dense layer was a simple fully connected layer
that performed a linear transformation on the output of the
pooling layer to produce an information summary on the 12
rhythm classes. In the present work, we separated the data sets
of 65,932 12-lead ECG recordings into training and valida-
tion sets, with the training set consisting of 90% of the data.
By learning from the approximately 50,000 ECG recordings
and their labeled arrhythmia classes, that is, the training set,
the network was able to determine the parameters that yielded
optimal performance. The technical details are shown in the
Supplemental Methods.

Details about our LSTM model training, including loss
function and initial learning rate, are presented in
Supplemental Figure S1.

To test the performance of our LSTM model, we also used
12-lead ECG signals as input data from a public source, the
China Physiological Signal Challenges (CPSC) data set, for
external validation.
Comparison of performance between model and
physicians

A separate data set of 116 12-lead ECGs from 116 patients
stored in the same MUSE ECG system with the 12 types of
heart rhythms was used for testing. We compared the classi-
fication accuracy and the labelling time between the algorithm



Table 1. Data set for training, validation, and testing of the long short-term memory model

No. Type of heart rhythm Abbreviation No. of ECGs for training/validation No. of ECGs for testing

1 Atrial fibrillation AFIB 18,077 10
2 Atrial flutter AFL 10,305 10
3 Atrial premature beat APB 4416 11
4 Ventricular bigeminy BIGEMINY 2604 10
5 Complete heart block CHB 589 8
6 Ectopic atrial rhythm EAR 430 8
7 First-degree AV block FRAV 1920 10
8 Normal sinus rhythm NSR 9019 9
9 Paroxysmal supraventricular

tachycardia
PSVT 4168 10

10 Second-degree AV block (type I) SAV 922 10
11 Sinus tachycardia ST 9212 10
12 Ventricular premature beat VPB 4270 10
Total 65,932 116

AV, atrioventricular; ECG, electrocardiogram.

Table 2. Diagnostic performance of the long short-term memory
model for different heart rhythms

Heart rhythm Accuracy AUC F1 Precision Recall

AFIB 0.991 0.998 0.947 1.000 0.900
BIGEMINY 0.982 1.000 0.909 0.833 1.000
SAV 0.991 0.999 0.947 1.000 0.900
EAR 0.974 0.987 0.769 1.000 0.625
AFL 0.982 0.999 0.909 0.833 1.000
CHB 0.991 1.000 0.941 0.880 1.000
NSR 0.965 0.992 0.818 0.692 1.000
FRAV 0.965 0.997 0.777 0.875 0.700
VPB 1.000 1.000 1.000 1.000 1.000
APB 0.982 0.98 0.900 1.000 0.818
ST 0.991 1.000 0.947 1.000 0.900
PSVT 0.991 1.000 0.952 0.909 1.000

AUC, area under the receiver operating characteristic curve; AFIB, atrial
fibrillation; AFL, atrial flutter; APB, atrial premature beat; BIGEMINY,
ventricular bigeminy; CHB, complete heart block; EAR, ectopic atrial
rhythm; FRAV, first-degree AV block; NSR, normal sinus rhythm; PSVT,
paroxysmal supraventricular tachycardia; SAV, second-degree AV block (type
I); ST, sinus tachycardia; VPB, ventricular premature beat.
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and board-certified physicians from different disciplinesd10
cardiologists, 8 emergency physicians, and 10 internistsdus-
ing a web-based digital ECG system for testing. Annotations
performed by a consensus committee of 3 board-certified
electrophysiologists were used as the criterion standard for
correct classification of each of the cardiac rhythms. The
committee members discussed each 12-lead ECG record and
reached a labelling consensus. The demographic data and
medical history of the patients were obtained from the elec-
tronic medical records at CMUH.

A closed-domain online platform was set up for doctors to
label the 116 12-lead ECGs’ data. The platform page was
prepared in advance by staffs before the physicians arrived at
the designated room. All participating physicians received a
full explanation of the rules and demonstration of the web-
based testing, if necessary, before starting the test. The 116
test data records were shown in random order to each of the
physicians after they entered their personal identification
number and clicked a “Get Data” button. The physicians
could actively click any index ECG number to retrieve the
first 12-lead ECG recording, accompanied by 12 pre-
determined options of rhythm classification. The next 12-lead
ECG jumped out automatically, also randomly, after clicking
a “Submit” button when finishing annotation of the first
ECG. The starting time was the instant when the first ECG
appeared, and the ending time for the same ECG was the
instant when the physician completed the selection and
clicked the Submit button to transmit the annotation to the
database. The difference between the starting time and the
ending time was the length of time required for each of the
specific ECGs. The total labelling time was the sum of time
for completing the annotation of all 116 ECGs.

All 116 testing 12-lead ECGs were presented via a web-
based digital ECG system. Therefore, we could compare the
diagnostic accuracy and labeling time between model and
physicians immediately after the tests were completed. Two
study investigators and a 3-member working staff were present
to monitor the test and ensure that the whole process was
completed smoothly without protocol deviation.

Statistical analysis

The classification performance of the LSTM model for
each of the 12 heart rhythms was assessed according to the
receiver operating characteristic (ROC) curve and area under
the ROC curve (AUC), accuracy, precision, recall, and F1
score. The annotations by the electrophysiologist committee
were used as the criterion standard. The F1 score was the
harmonic mean of the precision and recall. We used confusion
matrices to evaluate the heart-rhythm prediction performance
of the LSTM model and the cardiologists, emergency physi-
cians, and internists with respect to the labeling rendered by
the committee of electrophysiologists. The differences were
assessed by means of a generalized linear model (GLM) with
Tukey test to adjust for multiple comparisons.
Results
We used the LSTM model to detect 12 heart-rhythm

classes from a 12-lead ECG by with the use of 65,932 digi-
tal ECG signals from 38,899 patients at China Medical
University Hospital (CMUH). The mean age of the patients
was 64.4 � 19.3 years, and 44% were female. Table 1
presents the numbers of 12-lead ECGs used for training/
validation and testing for each of the 12 cardiac rhythms. The
diagnostic performance of the LSTM model and the ROC
curves for classifying the cardiac rhythm using the model are



Figure 3. Receiver operating characteristic (ROC) curves for 12 heart-rhythm predictions, using the long short-term memory model. ROC curves
were calculated at the sequence level for 12 heart rhythms. AFIB, atrial fibrillation; AFL, atrial flutter; APB, atrial premature beat; BIGEMINY,
ventricular bigeminy; CHB, complete heart block; EAR, ectopic atrial rhythm; FRAV, first-degree AV block; NSR, normal sinus rhythm; PSVT,
paroxysmal supraventricular tachycardia; SAV, second-degree AV block, type I; ST, sinus tachycardia; VPB, ventricular premature beat.
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presented in Table 2 and Figure 3, respectively. The accu-
racies of the LSTM model for the classification of the 12 heart
rhythms were all > 0.982 (range 0.982-1.0), and the model
achieved an AUC of > 0.987 for all rhythm classes (range
0.987-1.0). The precision and recall ranged from 0.692 to 1
and from 0.625 to 1, respectively. The F1 scores, which
represented the harmonic mean of precision and recall, ranged
from 0.777 to 1.0 for the LSTM model.

The performance of our model in classifying the 5 rhythm
classes (AFIB, APB, FRAV, NSR, and VPB) in CPSC com-
mon to our study is presented in Table 3. The accuracy
against the electrophysiologists’ criterion annotations of the
CPSC data set was 0.854 for AFIB, 0.689 for APB, 0.733 for
FRAV, 0.930 for NSR, and 0.657 for VPB, respectively.

To compare the performance of the LSTM model with
that of different board-certified physicians, we computed the
classification accuracy and labelling time needed for testing
116 ECG records for 10 cardiologists, 8 emergency physi-
cians, 10 internists, and the LSTM model. Table 4 presents
the classification accuracy and labelling times for the LSTM
model and the different groups of board-certified doctors. The
overall accuracy of the model (0.90) was superior to the mean
accuracies of the internists (0.55), emergency physicians
(0.73), and cardiologists (0.83). The labelling time was only



Table 3. The performance of the long short-term memory model with the use of the CPSC data set

CPSC/model CPSC dataset Mostayed et al.

Type Abbreviation Matched/total Accuracy* Accuracyy

1 Normal/normal sinus rhythm NSR 896/963 0.930 0.82
2 Atrial fibrillation AF/AFIB 974/1140 0.854 0.74
3 First-degree atrioventricular block/first-degree

AV block
1-AVB/FRAV 533/727 0.733 0.70

4 Premature atrial contraction/atrial
premature beat

PAC/APB 412/598 0.689 0.57

5 Premature ventricular contraction/ventricular
premature beat

PVC/VPB 448/682 0.657 0.88

CPSC, China Physiological Signal Challenges.
* Combination of CPSC training set and validation set.
yOnly CPSC validation set.

Table 5. Average accuracies of the physicians and the LSTM model for
the classification of each of the 12 heart rhythms

Heart rhythm Internists
Emergency
physicians Cardiologists

LSTM
model

AFIB 0.65 � 0.23 0.86 � 0.23 0.9 � 0.15 0.90
AFL 0.6 � 0.17 0.69 � 0.15 0.89 � 0.14 1.00
APB 0.37 � 0.25 0.51 � 0.20 0.73 � 0.25 0.82
BIGEMINY 0.65 � 0.42 0.91 � 0.23 0.95 � 0.08 1.00
CHB 0.5 � 0.23 0.80 � 0.26 0.83 � 0.14 1.00
EAR 0.00 � 0.00 0.23 � 0.23 0.66 � 0.30 0.62
FRAV 0.27 � 0.24 0.48 � 0.20 0.50 � 0.15 0.70
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5.7 seconds for the model, which was far shorter than the time
needed by the physicians to complete the annotations.

Table 5 presents the classification accuracies of the physi-
cians and the LSTM model for the 12 heart rhythms. As
expected, for each of the 12 cardiac rhythms, the annotations
performed by the cardiologists was more accurate than those
performed by the internists, and accuracy rates for the cardi-
ologists were equivalent to or higher than those of the emer-
gency physicians. Notably, the model outperformed the
cardiologists in 11 of the 12 rhythm classes, with the excep-
tion of EAR (0.62 vs 0.66). The LSTM model classified the
majority of the 12 testing rhythms with an accuracy rate from
0.82 to 1. The accuracy rates of the LSTM model for pre-
dicting EAR and FRAV were 0.62 and 0.7, respectively,
which were similar to those of the cardiologists (0.66 and 0.5,
respectively). Interestingly, none of the internists correctly
annotated the EAR. The labelling time ranged from 20 to 71
minutes for the internists, from 29 to 71 minutes for the
emergency physicians, and from 22 to 42 minutes for the
cardiologists (Supplemental Table S1).

The 2 confusion matrices exhibited a similar pattern of
concordance and discordance between the LSTM model and
the averages for the cardiologists against the criterion anno-
tations performed by an electrophysiologist consensus com-
mittee (Fig. 4). For example, the prediction success was
consistently high for both AFIB and BIGEMINY. However,
the LSTM model and cardiologists often had difficulty dis-
tinguishing between EAR and NSR and between FRAV and
NSR.

The interobserver errors of individual rhythm class in each
group of the labelling physicians are shown in box and scatter
plots in Figure 5. We also calculated the between-group
variation of accuracy, which showed significant variations in
annotating 9 of the 12 rhythm classes among the 3 groups of
Table 4. Accuracy and labelling time for the model and doctors

Group Accuracy Labelling time

Board-certified doctors
Internists 55% (0.55 � 0.14) 4600900 � 1303500
Emergency physicians 73% (0.73 � 0.08) 3504900 � 705200
Cardiologists 83% (0.83 � 0.10) 3002100 � 600200
Average 70% (0.70 � 0.17) 3703300 � 1105600

LSTM model 90% (0.90) 5.700 (49 ms/sample)

Data are presented as % and mean � SD.
0, minutes; 00, seconds; LSTM, long short-term memory.
physicians (Supplemental Table S2), particularly for EAR
(F ¼ 21.17), AFL (F ¼ 8.1), PSVT (F ¼ 7.71), and CHB
(F ¼ 6.14).

The concordance of ECG annotations from the 3 board-
certified electrophysiologists was 98.3%. Only 2 of the 116
testing ECGs showed discordant labelling among the 3 elec-
trophysiologists (Supplemental Table S3), which was resolved
by holding a meeting to reach the final consensus. We further
checked the model’s performance and the cardiologists’ per-
formance in labelling the 2 particular ECGs with discordant
labelling. For index ECG no. 30 (Fig. 6), the LSTM model
and 4 cardiologists correctly classified the rhythm as APB,
whereas the remaining 6 cardiologists annotated it as NSR.
For index ECG no. 64 (Fig. 7), which was poorly interpreted
by cardiologists as well as misclassified by the model, the
LSTM model and 9 cardiologists erroneously annotated it as
NSR, with only 1 cardiologist correctly classifying it as FRAV.
Another example of misidentified ECGs by the model but not
by cardiologists is shown in Figure 8. The electrophysiologists’
criterion annotation was AFIB; 8 out of 10 cardiologists
correctly annotated the rhythm as AFIB, but the LSTM
NSR 0.96 � 0.05 0.93 � 0.08 0.98 � 0.04 1.00
PSVT 0.47 � 0.29 0.81 � 0.20 0.86 � 0.17 1.00
SAV 0.68 � 0.20 0.73 � 0.12 0.88 � 0.13 0.90
ST 0.67 � 0.25 0.84 � 0.15 0.83 � 0.27 0.90
VPB 0.75 � 0.26 0.98 � 0.04 0.94 � 0.07 1.00
Overall 0.55 � 0.14 0.73 � 0.08 0.83 � 0.10 0.90

Data are presented as mean � SD.
AFIB, atrial fibrillation; AFL , atrial flutter; APB, atrial premature beat;

BIGEMINY, ventricular bigeminy; CHB, complete heart block; EAR, ectopic
atrial rhythm; FRAV, first-degree AV block; LSTM, long short-term memory;
NSR, normal sinus rhythm; PSVT, paroxysmal supraventricular tachycardia;
SAV, second-degree AV block (type I); ST, sinus tachycardia; VPB, ventric-
ular premature beat.



Figure 4. Confusion matrices for the long short-term memory model and different board-certified cardiologists. Confusion matrices for the pre-
dictions of (A) the cardiologists and (B) the LSTM model vs the electrophysiologist committee consensus. The accuracy for each heart rhythm
category is displayed on a color gradient scale.
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model and 1 cardiologist misclassified this ECG as AFL, and
another cardiologist labeled it as ST.
Discussion
To our knowledge, this is the first study to demonstrate the

feasibility of a deep-learning LSTM model for interpreting the
12 common heart rhythms with the use of a large number of
12-lead ECG signals. The usefulness of the model was
confirmed by comparing its rhythm-classification performance
with that of board-certified physicians from different spe-
cialties. The rhythm-classification accuracy of the LSTM
model was superior to that of emergency physicians and in-
ternists and outperformed the cardiologists in 11 of the 12
rhythm classes. Because of its ultrafast rhythm classification
and performance superior to physicians (who had longer
annotation times and inferior accuracy), the proposed model
may have clinical relevance for the early diagnosis of cardiac-
rhythm disorders.

Recently, Mostayed et al.18 used a bidirectional LSTM
network to classify 9 ECG types based on the 12-lead ECG
signals in aCPSCdata set. Our LSTMmodel differs from that of
Mostayed et al. in details of the neural network architecture as
well as in the inputs and outputs of 12-lead ECG data
(Supplemental Table S4). The input data set of the present study
was from 65,932 12-lead ECG recordings compared with only
6877 ECG waveforms used in the Mostayed et al. study.
Mostayed et al. trained their model on the basis of segments,
with each of them consisting of 4 cardiac beats from a given
ECG record, whereas we trained our model according to full
ECG waveforms without dividing them up into a certain
number of cardiac beats. For the classification outputs, our
model was designed to classify 12 rhythm types, whereas Mos-
tayed et al. predicted 9 ECG classes in their model, with 5 classes
(AFIB, APB, FRAV, NSR, and VPB) common between the 2
models. Our model outperformed in 4 of the 5 rhythm classes
common to the 2 models, as presented in Table 3. We noticed
that although our model did extremely well on our own data set
(Table 2), its performance on VPB classification was worse than
that of Mostayed et al. on the CPSC data set. It is possible that
the discrepancy might be attributed to the differences in data set
used or in physicians’ labelling for this particular rhythm class.
The exact reasons for this inconsistency remain to be deter-
mined. It should also be noted that our model was further tested
on 116ECG recordings against the consensus from a committee
of 3 board-certified electrophysiologists in a real-world setting,
and the model was demonstrated to outperform 10 internists, 8
emergency physicians, and 10 cardiologists in overall
performance.

Twelve-lead ECG vs single-lead samples

Because of the complexity of 12-lead ECG signals,
previous studies of deep learning for classifying rhythm
disorders commonly used single-lead ECG records12,14,19,20

or 2-lead ECG records.21 Hannun et al. developed a DNN
to classify 12 rhythm classes with the use of 91,232 single-
lead ECGs recorded by a single-lead ambulatory ECG de-
vice. In their study, the DNN achieved an average ROC of
0.97 and an average F1 score of 0.837, exceeding the average
performance of cardiologists. However, because the input
data set comprised single-lead ECG signals with limited
signal information compared with standard 12-lead ECG,
it remains to be determined whether that algorithm



Figure 5. The interobserver error of individual rhythm class in each group of the labeling physicians. The box-scatter plot shows the interobserver
variation of 12 heart rhythms among three groups of physicians. AFIB, atrial fibrillation; AFL, atrial flutter; APB, atrial premature beat; BIGEMINY,
ventricular bigeminy; CHB, complete heart block; CV, cardiologists; EAR, ectopic atrial rhythm; ER, ER physicians; FRAV, first-degree AV block; MR,
internists; NSR, normal sinus rhythm; PSVT, paroxysmal supraventricular tachycardia; SAV, second-degree AV block, type I; ST, sinus tachycardia;
VPB, ventricular premature beat.
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performance can be generalized to 12-lead ECGebased
rhythm classification. Furthermore, most of the previous
studies used data from the MIT-BIH arrhythmia database
(PhysioNet), which has limitations such as an insufficient
number of patients and rhythm strips for a broad spectrum
of arrhythmia classification.22

One of the strengths of the present study is that we used
65,932 digital 12-lead ECG signals from 38,899 patients that



Figure 6. Example 1: Electrocardiogram of discordant labelling by a consensus committee of 3 board-certified electrophysiologists. The purple
arrows indicate the atrial premature beat (APB). The long short-term memory model and 4 cardiologists correctly classified the rhythm as APB,
whereas the remaining 6 cardiologists annotated it as normal sinus rhythm.
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were exclusively labelled by 5 experienced cardiologists and then
stored in a unique ECG data set according to a standardized
protocol to develop the LSTMmodel. LSTM, which is a type of
RNN model, can accept a wide range of time-series structure
inputs. This is particularly useful for machine learningebased
classification of cardiac arrhythmias with the use of 12-lead
ECG recordings.19 LSTM models can solve complex, artifi-
cial, long time-lag tasks16 and overcome the limitations of
conventional RNNs by accessing past and future input features
at a given time and applying a 2-way LSTM network, as pro-
posed byGraves and Schmidhuber.20 Because of these strengths,
the LSTM model outperformed the board-certified physicians
from 3 specialties in the classification accuracy of the 12 cardiac
rhythms. Recently, Yildirim also developed a bidirectional
LSTM network-based model for classifying ECG signals23;
however, the data was based on single-lead ECGs from the
PhysioBankMIT-BIH arrhythmia database to classify 5 rhythm
types only, using a relatively small number of ECG samples for
training, validation, and testing. The present study further
Figure 7. Example 2: Electrocardiogram of discordant labelling by a consen
between the 2 dotted lines shows prolongation of the P-R interval. The long
normal sinus rhythm, with only 1 cardiologist correctly classifying it as first-
expands the use of the deep-learning LSTM model to predict
more clinically relevant heart rhythms with the use of a larger
number of 12-lead ECG signals.
Testing in the clinically relevant scenario

The 12-lead ECG is a very useful first-line diagnostic tool
for the detection of various cardiovascular diseases, including
cardiac-rhythm disorders, conduction abnormalities, and
myocardial ischemia or infarction, by physicians across
different specialties. In hospital settings, emergency physicians
or internists are usually the first medical contacts for patients;
thus, they must interpret 12-lead ECGs at the scene. We
compared the performance not only between the model and
cardiologists but also between the model and emergency
physicians and internists. This study is the first to demonstrate
the evidence-based usefulness of the LSTM model for pre-
dicting the 12 common cardiac rhythms. The classification
accuracy and ultrafast annotation time of the model were
sus committee of 3 board-certified electrophysiologists. The interval
short-term memory model and 9 cardiologists erroneously annotated
degree atrioventricular block.



Figure 8. Example of an electrocardiogram misidentified by the long short-term memory (LSTM) model. The electrophysiologists’ consensus was
atrial fibrillation (AFIB); 8 of the 10 cardiologists correctly annotated the rhythm as AFIB, whereas the LSTM model and 1 cardiologist misclassified it
as atrial flutter, and another cardiologist labeled it as sinus tachycardia.
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superior to those of all the board-certified physicians,
including the cardiologists. We think that this approach may
reduce the misdiagnosis rate for computerized 12-lead ECGs
and enhance the efficiency of 12-lead ECG interpretation by
more precisely triaging or accelerating the decision-making
process in patient care.
Limitations
This study had several limitations. First, the LSTM model

was used only to predict the 12 rhythm classes and not for
detecting the ST-T change, which is important for diagnosing
acute myocardial infarction.24 Indeed, our ongoing work is to
incorporate prelabelled 12-lead ECGdata of different clinically
relevant cardiovascular diseases, such as ST-segment-elevation
acute myocardial infarction, noneST-segment-elevation
myocardial infarction, ventricular preexcitation, and
ventricular tachycardia, for machine learning with the use of
our large 12-lead ECG database over a more than 10-year
period. Second, we did not add specific ECG noise,
including baseline wander, electrode motion artifacts, and
muscle artifacts, to the input data for training. Therefore, the
proposed model may not be effective in cases of ECG noise.
Third, our test data set consisted of only 116 patients; the
prediction accuracy for rare rhythms should be investigated by
increasing the amounts of training and testing data. Fourth, the
current LSTM model was not designed to interpret more
complex ECG patterns, such as those patients with AFIB
combined with intraventricular conduction disturbances.
Therefore, we did not include any ECGs of AFIB combined
with intraventricular conduction disturbances for the clinical
testing in Table 5. However, we found that, of the 18,077
ECGs labeled as AFIB in the training/validation data set
(Table 1), 387 (2.14%) were compounded with intraventric-
ular conduction disturbances, and the LSTMmodel accurately
interpreted them to be AFIB in 29 of the 32 testing cases (0.91)
in the same data set. Further studies with improvement of
machine-learning technologies are required to circumvent this
limitation for interpreting more complex arrhythmias. Finally,
complex AV block and differentiation of wide QRS-complex
tachycardia are 2 areas where physician interpretation may
fail and where the failure is most clinically relevant. In this
study, we aimed to test the feasibility and efficacy of using a
deep-learning LSTM model for classifying the 12 common
heart rhythms with the use of a large number of 12-lead ECG
signals. The model is not used to differentiate wide QRS-
complex tachycardia mainly because we do not have a suffi-
cient number of wide QRS-complex tachycardia ECGs for
machine learning so far. Indeed, the usefulness of our model in
differentiating wide QRS-complex tachycardia should be
confirmed in future studies.
Conclusion
We demonstrated the feasibility and effectiveness of a

deep-learning LSTM model for interpreting the 12 common
heart rhythms with the use of a large number of 12-lead ECG
signals. The findings may have clinical relevance for expe-
diting the diagnosis of cardiac-rhythm disorders and facili-
tating decision making in patient management.
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